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Nomenclature
b = wing span
CL = lift coef� cient
C p = pressure coef� cient
Cs = leading-edge suction coef� cient
CT = leading-edge thrust coef� cient
c = wing root chord
cs = sectional leading-edge suction coef� cient
k, K = constant
ki = induced ef� ciency constant
kp = potential constant
kv = vortex lift constant
S = wing area
s = local semispan
U = freestream velocity
x = chordwise direction
y = spanwise direction
yv = spanwise location of vortex core nondimensionalized

by local semispan
zv = height of vortex core above wing surface

nondimensionalizedby local semispan
a = angle of attack
C = vortex circulation
² = wing apex half-angle
K = leading-edge sweep angle

Subscripts

p = potential
v = vortex

Introduction

P OLHAMUS’s1 leading-edge suction analogy provides an ac-
curate and simple methodology to estimate the lift of slender

delta wings. Polhamus decomposed lift into two components, one
due to potential lift and the other due to vortex lift. The potential
lift component is de� ned as the attached � ow lift component in the
absence of leading-edge suction and is represented by1

CL p = kp sin a cos2 a (1)

where k p is the wing lift curve slope at zero lift and for delta wings
may be estimated as2

kp = 4 tan0.8 ² (2)
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The vortex lift coef� cient is described by1

CLv = kv sin2 a cos a (3)

where kv = @Cs / @ sin2 a and is relatively invariant with K (see
Ref. 1), the leading-edge sweep of the wing. Frequently it is as-
sumed that kv = p (slender wing theory gives kv = p / sin K ). The
spanwise circulationdistributionof the vortex of a thin planar delta
wing with leading-edgevortexseparationmay be approximatedas2

C (s) =
1.106cUk p sin a

4k

"
2s

b

s

1 ¡

³
2s

b

2́

+ arcsin
2s

b

#
(4a)

where2 k =0.5, or

C (s) = 4.63Uc tan0.8 ² tan1.2 a cos a (2s /b) (4b)

Equation (4b) gives the spanwise circulation distribution of a delta
wing based on an expression provided by Hemsch and Luckring3

modi� ed to include a spanwise conical � ow distribution such that
the circulation increases in a linear fashion. Visser and Nelson4

suggested the correlating constant of 4.63. Equations (4a) and (4b)
show that increasing the sweep of the wing (² and kp reducing)
results in a reduction in the strength of the leading-edge vortex
at any corresponding spanwise location. Furthermore, as summa-
rized by Lowson,5 increasing slenderness results in the vortices’
vertical displacement from the wing surface increasing. Conse-
quently, increasing leading-edge sweep both reduces the strength
of the leading-edge vortices and displaces them farther away from
the wing; however, as shown by Eq. (3), this appears to have no
impact on the vortex lift coef� cient. Why this is so is investigated.

Discussion
Equating Eq. (4a) to the Ref. 6 expression for the sectional

leading-edge suction (which is equal to the local vortex lift by
Polhamus’s supposition) yields

C (s)
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where c(s) is the local chord. Simpli� cation (with E0 =1.106p / b
and k =0.5) (Ref. 2) yields

C (s)
Uc(s)

=
cs(s) cos K

(1 ¡ kpki ) sin a
(5)

where for a slender delta wing ki may be approximated as 1/ p AR.
Analysis of Eq. (5) shows that the invariant behavior of cs(s) with
changing sweep is primarily due to the in� uence of the cos K term
and, to a lesser extent, the effective downwash term (1 ¡ kpki ).
U cos K may be inferred as representing the freestream compo-
nent perpendicular to the wing leading edge. The implications of
these terms on the actual � ow physics is not, however, clear, as will
become apparent.

An obvious explanation for the constancy of the net vortex lift
coef� cient with changing sweep is the increasing in� uence of the
leading-edge vortex on the wing as K increases, that is, the vor-
tex increases in size relative to the wing span. Using Bernoulli’s
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equation and for simplicity gauging the effect of the vortex strength
and trajectory on the spanwise-inducedloading by assuming an in-
� nite axisymmetric line vortex give at any spanwise station, using
Eq. (4b),

C pv (y) = 1 ¡ (Uv (y) / U )2, Cpv (x , y) = 1 ¡

""¡¡
4.63 tan1.2 a cos a cos2

©
tan ¡ 1(1/ zv )[(y / s) ¡ yv ](2s / b)

ª¢¢

2p zv tan0.2 ²

##2

(6)

where yv and zv are the lateral and vertical vortex core trajectories
as a fraction of the local semispan s =x tan ². The 2s / b expression
in Eq. (6) accounts for an assumed conical variation of vortex cir-
culation with span. Note that this simpli� ed expression ignores any
chordwise velocity contribution toward upper surface pressure and,
consequently, predicts too positive pressures. Using representative
values for yv and zv from Lowson5 and integrating spanwise and
chordwise using

D CL =
2
S

Z c

0

Z s

0

¡ Cpv (x , y) dy dx (7)

show that CL is reduced by increasing slenderness as would be
expected from increased vortex displacement in combination with
reduced vortex strength. Note that Eq. (7) does not account for the
lower wing surface so as to re� ect vortex-induced loading only.
As a quantitative example, using the aforementioned values from
Lowson5 for a =20 deg gives the reduction in the vortex lift coef-
� cient resulting from increasing K from 70 to 80 deg as 8%. This
change in the local vortex lift coef� cient is far greater than the varia-
tion of kv with sweep1 (for this example the change is approximately
0.95%). Although this example is extremely simplistic, results by
Roos and Kegelman7 for the spanwise loading over the apex region
of a 60- and 70-deg sweep delta wing at a =20 deg show that the
two wings share similar loading inboard, whereas the lesser swept
wing ( K =60 deg) has higher peak loading under the vortex for a
similar Reynolds number. Note that this result applies to the apex
region of the wings as the K =60 deg delta was affected by vortex
breakdown over the rear of its surface.

Consequently,Roos and Kegelman’s7 results suggest that the rel-
ative increasein the size of the leading-edgevorticeswith increasing
sweep does not in� uence the wing’s � ow� eld to such an extent as
to compensate for the reduction in circulationand altered trajectory.
Thus, the cos K term must relate to other properties.Slendernessor
sweep affects the upstream penetration of the Kutta condition, that
is, a more slender wing has reduced trailing-edge in� uence. Also,
as shown by Kirkpatrick,8 trailing-edgeeffects impact the nonlinear
lift to a greater extent than the linear lift. Changes in trailing-edge
in� uence will affect both the level of vortex lift and of potential
lift developed.Trailing-edge in� uences should be evident in the lo-
cation of the wing’s aerodynamic center (a.c.). If the cos K term
effectively relates to the Kutta condition, it should then be possible
to relate it to the location of the wing’s a.c.

Slender wing theory, which precludes wake and trailing-edgeef-
fects, predicts that the location of the wing’s a.c. should be at 2

3
of the delta wing root chord. This may be considered an upper (or
rearward) bound because the wing sweep tends to 90 deg and the
wing’s trailing-edge extent tends to 0. It would be expected that a
natural formulation relating the a.c. and cos K would encompass
some deviation from the slenderwing theory a.c. location as a func-
tion of cos K . It was found (empirically) that this relation is, in fact,
extremely simple and is given by

¡
2
3

¡ a.c./ c
¢
(1/ cos K ) = const (8)

Equation (8) was determined using both experimentally9 and
numerically10 determined values for the a.c. location of delta wings
at low a . As may be seen in Fig. 1, this simple expression accu-
rately correlates the relationship of the wing’s a.c. to its leading-
edge sweep. The a.c. data from the vortex-latticemethod was taken

as the average of the potential � ow and vortex lift contributions
to be consistent with the experimental data, which contained both
contributions.Computationally,10 at low a , the potential and vortex
lift a.c. locations are within 0.2% of each other for K =65 deg and

slowly diverge to within 3.1% for K =80 deg. As seen, the data
collapse to an average value of approximately 0.205 for the exper-
imental data and 0.176 for the numerical data. Consequently, this
yields a simple expression for the a.c. location of a delta wing at
low a .

a.c./c = 2
3 ¡ K cos K (9)

where K ¼ 0.2 for a thin planar delta wing. For delta wings, in-
creasing a generally sees a forward migrationof the wing’s a.c. due
to trailing-edge effects. An empirical correction to account for this
effect was determined to be of the form

a.c./c = 2
3 ¡ K (1 + 0.04 a ) cos K (10)

with a measured in degrees. Figure 2 shows a comparison of the
experimentaldata fromRef. 9 with Eq. (10), K =0.2. The correction

Fig. 1 Correlation of delta wing a.c. location as a function of K , ® =
0 deg.

Fig. 2 Prediction of delta wing a.c. location as a function of ®; exper-
imental data from Ref. 9.
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to Eq. (10), that is, 1 + 0.04a , does not embody any � ow physics
and is essentially a curve � t. However, Fig. 2 shows that Eq. (10)
adequately predicts the behavior of the wing’s a.c. with a , as well
as its dependence on sweep. This expression should prove useful
for conceptualdesign studies.

Substituting Eq. (9) into Eq. (5) gives

C (s)
Uc(s)

=
[cs(s) / K ]

¡
2
3 ¡ a.c. /c

¢

(1 ¡ k pki ) sin a

which on rearranging and solving for the sectional leading-edge
suction (equal to the local vortex lift) becomes

cs(s) =
C (s)

Uc(s)

K (1 ¡ kpki ) sin a¡
2
3 ¡ a.c./ c

¢ (11)

This expression suggests that the reduction in C (s) with increas-
ing sweep is counterbalanced by the rearward shift in the wing’s
a.c. location with increasing sweep. This implies that the relative
invariance of vortex lift with increasing K is a result of reduced
trailing-edgeeffects such that the net vortex lift coef� cient remains
relatively constant.

Conclusions
Polhamus’s leading-edge suction analogy estimates that the vor-

tex lift coef� cient of delta wings is relatively insensitive to wing
sweep. This is despite the reduction in vortex strengthand increased
vortexdisplacementfrom the wing surface that results from increas-
ing sweep. An analytical investigation suggests that the invariance
of the vortex lift coef� cient is a result of increasing slenderness re-
ducing trailing-edge effects. The analysis yields a simple explicit
relationship between the a.c. and leading-edge sweep of a delta
wing. This in turn allows the prediction of the a.c. and its variance
with angle of attack for thin planar delta wings.
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Introduction

L IMIT-CYCLE oscillations (LCOs) resulting from control sur-
face freeplayare of concernin many aircraft because they typi-

cally occur at a dynamicpressurewell below that of the linear � utter
boundary.The stabilityand performanceof the aeroservoelasticsys-
tem is of particularimportancein the presenceof such nonlinearities
that can develop during the life cycle of the aircraft. Results pre-
sented by Vipperman et al.1 served to demonstrate that the control
surface actuators can be used to provide successfully gust allevia-
tion and extend the � utter boundary for a three-degree-of-freedom,
linear, aeroelastic model. Additionally, Vipperman et al.,2 as well
as Frampton and Clark,3 demonstrated that robust control strategies
can be applied in the designof compensatorsfor a family of dynamic
pressures.

The purpose of this work is to investigate the effect of control
surface freeplay nonlinearities on the closed-loop performance of
a three-degree-of-freedom aeroelastic system. In particular, control
systems designed for an open-loop linear three-degree-of-freedom
system were applied to a nonlinear three-degree-of-freedom sys-
tem and evaluated for their performance. It is vital that these linear
compensators display stable, closed-loop response in the presence
of freeplay nonlinearities that may evolve over the life cycle of the
aircraft. Results from this study indicate that the limit-cycle am-
plitudes in both pitch and plunge can be attenuated signi� cantly
through the application of controllers designed for a linear three-
degree-of-freedomaeroelastic system. The primary mechanism of
control serves to convert high-amplitude, low-frequency LCOs to
low-amplitude, high-frequencyLCOs for the case considered.

In previous work the dynamic response of a three-degree-of-
freedom aeroelastic typical section model with a single control sur-
face extendingover the span of the airfoilwas investigatedboth ana-
lytically and experimentally.4 In particular,control surface freeplay
was investigated, and LCOs were observed. The freeplay nonlin-
earity was designed to produce a piecewise linear change in the
structural stiffness of the control surface,4 and the three-degree-of-
freedom model was subjected to two-dimensional, incompressible
� ow. The development of the aeroelastic system follows that of
Edwards et al.5

Three-Degree-of-Freedom System Model Description
As detailedby Conner et al.,4 the three-degree-of-freedom model

here is based upon the state-space model originally proposed by
Edwards et al.5 A schematic diagram of the model is depicted in
Fig. 1. As illustrated, a � ap control surface is attached to the wing,
and a springC b providesa restoringforce to theneutralposition.The
structural nonlinearity introduced for the purpose of this analysis is
a spring with a symmetric freeplay region.

A block diagram of the dynamic system model is presented in
Fig. 2. As illustrated, a structural nonlinearity is included in the
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